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Intro to Geo/enviro Al + practical examples
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1 Inspirujme se, 20-21.11.2024, Strbské pleso



Outline

— About me / us

— Intro / Motivation

— Examples of Al in enviro + from us

— How to get into Al (as an enviro person)
— Conclusion
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About me / us

- CERIT-SC, Institute of Computer Science, Masaryk University

Data Science @CERIT-SC representatives here*:
Enviro-related activities:

Terézia Slaninakova — ﬁf\p/)lglgg); Al to enviro research w/ CzechGlobe
Ph.D. student (Faculty of Informatics, Masaryk University) — EnviLab (https://envilab.cerit-sc.cz/) w/ CDV
« topic: similarity search in complex data using Al (CZU)
. : — eLTER: Environmental Research infrastructure
» focus at CERIT-SC: Al applied to enviro ~ Tom’s presentation
Pavel Kraus
* Mgr. student, topic: Language models applied to criminal
investigations
Tom Rebok

« Senior researcher, research group leader

*not actually here ®

3 Inspirujme se, 20-21.11.2024, Strbské pleso

— =
QD J ==

=


https://envilab.cerit-sc.cz/

Introduction

What even is Al?
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Introduction

What even is Al?
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Motivation

Why use Al in enviro

— Enviro systems are complex, therefore the data is complex

— Interrelated factors: climate, biodiversity, and human activity

— Diverse data sources: Satellites, sensors, historical records
High spatial, temporal, and spectral resolutions, new data every couple of days

— We want to test a hypothesis, model a relationship, predict something
Previously, we might have used statistics
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Motivation

Why use Al in enviro

— Enviro systems are complex, therefore the data is complex

— Interrelated factors: climate, biodiversity, and human activity

— Diverse data sources: Satellites, sensors, historical records
High spatial, temporal, and spectral resolutions, new data every couple of days

— We want to test a hypothesis, model a relationship, predict something
Previously, we might have used statistics

— Statistics vs ML

— Have complex relationships between variables?
— Need to integrate various data sources, to process big data?
— Not necessarily any of the two, but want a better predictive performance?
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Use of Al in enviro
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Figure 1. Number of publications in ML applications in ESE based on
the Web of Science (access date 1/28/2021) with the keyword
“machine learning” combined with the categories of environmental
science, water resources, public environmental occupational health,
environmental engineering, and environmental studies. The inset
shows the subtopic results from 1990 to 2020 with the keywords
specified.

Zhong, Shifa, et al. "Machine learning: new ideas

and tools in environmental science and

engineering." Environmental science &

technology 55.19 (2021): 12741-12754.
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Use of Al in enviro

Examples

— Soil and Land Management
Predict land use changes and soil health from satellite imagery and soil sensors

— Water Quality and Management
Predict indicators such as pH, dissolved oxygen, and concentrations of pollutants from
Sensors.

— Air Quality Monitoring
Predict pollution levels using air quality monitoring stations.

— Biodiversity and Ecosystem Monitoring
Monitor wildlife populations and assess biodiversity from camera trap footage and
acoustic recordings

— Climate and Weather Prediction
Improve the accuracy of precipitation forecasts using deep learning

9 Inspirujme se, 20-21.11.2024, Strbské pleso

— =
QD J ==



Examples from us

Vegetation parameters | Coop. w/ R. Janoutova, M. Svik, CzechGlobe

— Goal: Predict the amount of chrolophyll and carotenoids

Fraxinus
$ 3
* Fraxinus

in vegetation using real and simulated data = Jo 2o

. Carpinus : Quercus
a a * Carpinus ¥
- a

Quercus
*
Quercus
Tilia ,
Fraxinus = |
Tilia

_Carpinus

* Carpinus
L 3

Fraxinus

— Satellite (S2, HLS) image, Lanzhot
— “Labels”:
- in-situ acquisition, 69 trees
- Similar simulated spectra using DART

.
Lanzhot
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Examples from us

Vegetation parameters

Performance of individual algorithms, all hyperparameters
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Examples from us

Bark beetle prediction | Coop w/ Vojta Barta (CzechGlobe)

e Goal: Predict the state (healthy or not) of a

tree in a region infested with the bark beetle N
* Data:
 Airborne (CASI) image, VNIR spectrum (400-
1000 nm) o0
« Jlabels®: 7 acquisitions nearby Brno (Jedovnice),  soo
150 trees 1000
manual annotation
° MethOdS 0 200 400 600 800 1000 1200 1400 -

» Explorative data analysis (EDA)
« Supervised binary classification

Af[Se oy
pRRnnnRn
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Examples from us

Bark beetle prediction [Work in progress] | Explorative data analysis
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Examples from us

Bark beetle prediction [Work in progress] | Explorative data analysis

Month 1 Month 3
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Examples from us

Bark beetle prediction [Work in progress]

— Preliminary results:

14 Cross-validation results by month (timeseries)

Classifier
—— LogisticRegression
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How to use Al in enviro research?

2 Options:

— 1) Find a partner to outsource ML to

— Not as “0 work” as it sounds
— Need a lot of contact with you to understand the problem, to gather feedback on results

— 2) Learn ML

— Not necessarily “all of ML”
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How to use Al in enviro research?

2 Options:

— 1) Find a partner to outsource ML to

— Not as “0 work” as it sounds
— Need a lot of contact with you to understand the problem, to gather feedback on results

— 2) Learn ML
— Not necessarily “all of ML”
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How to use Al in enviro research?

Learn ML - sources

Machine Learning in Environmental Research: Common Pitfalls and

Best Practices
Jun-Jie Zhu,* Meigi Yang, and Zhiyong Jason Ren*

Cite This: Environ. Sci. Technol. 2023, 57, 17671-17689

I: I Read Online

Inappropriate Implementations

Applying

Analyzing

(a)
Feature

Engineering Split k

Validation k
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How to use Al in enviro research?

Learn ML - sources

Machine Learning in Environmental Research: Common Pitfalls and
Best Practices
Jun-Jie Zhu,* Meigi Yang, and Zhiyong Jason Ren*

Cite This: Environ. Sci. Technol. 2023, 57, 17671-17689 I: I Read Online

Python, scikit-learn, some kind of Al pair-programmer

— Kaggle.com
— E.g. https://www.kaggle.com/datasets/akshatgupta7/crop-yield-in-indian-

states-dataset

Agricultural Crop Yield in Indian States Dataset

Crop yields of Indian States and UTs from year 1997-2020 V

Data Card Code (11)  Discussion (0)  Suggestions (0)

Usability ©
10.00

About Dataset

This dataset encompasses agricultural data for multiple crops cultivated across various states in India from the year 1997 till 2020. The dataset License
provides crucial features related to crop yield prediction, including crop types, crop years, cropping seasons, states, areas under cultivation, CC BY-SA 4.0
production guantities, annual rainfall, fertilizer usage, pesticide usage, and calculated yields.
Expected update frequency
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How to use Al in enviro research?

Learn ML - sources

Machine Learning in Environmental Research: Common Pitfalls and
Best Practices
Jun-Jie Zhu,* Meigi Yang, and Zhiyong Jason Ren*

Cite This: Environ. Sci. Technol. 2023, 57, 17671-17689 I: I Read Online

— Python, scikit-learn, some kind of Al pair-programmer

— Kaggle.com

— Geospatial machine learning from Microsoft:
— https://www.microsoft.com/en-us/research/project/geospatial-machine-

learning/, various datasets:
https://torchgeo.readthedocs.io/en/stable/api/datasets.html

20 Inspirujme se, 20-21.11.2024, Strbské pleso

TorchGeo is a domain library, similar to . providing datasets, samplers, transforms, and pre-trained

models specific to geospatial data.
The goal of this library is to make it simple:

1. for machine learning experts to work with geospatial data, and

2. for remote sensing experts to explore machine learning solutions.
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https://www.microsoft.com/en-us/research/project/geospatial-machine-learning/
https://www.microsoft.com/en-us/research/project/geospatial-machine-learning/
https://torchgeo.readthedocs.io/en/stable/api/datasets.html

Conclusion

— Al is a useful tool for modelling relationships and generating predictions

— The results are only as good as the data is: Data curation, sharing, open repositories,
adherence to FAIR principles matters

— To apply Al properly, you need to master the basics

— Many tutorials, resources

— Getting into programming has never been easier
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